Simple Power Law for Transport Ratio with Bimodal Distribution of Coarse Sediment

Chris Thaxton
Appalachian State University

Joe Calantoni
Naval Research Laboratory
Motivation

Objective:

• Develop simple formula for predicting partial transport rates with bimodal mixtures of coarse sediment under waves.

Potential Impact:

• Predicting spatial and temporal evolution of littoral seabed by grain size is important to wave/circulation modeling.
Discrete Particle Model

Model Interactions:
- Grain-grain: elastic-plastic theory & experiment
- Grain-fluid: buoyancy, drag, virtual mass
- Fluid-fluid: eddy viscosity model

(Drake and Calantoni, 2001)
Particle-Particle Interactions

Normal Force (e.g., Walton and Braun, 1986):

loading: \[F_n = k_1a \]

unloading: \[F_n = \max \left[k_2 \left(a - a_0 \right), k_3a \right] \]

coefficient of restitution: \[e = \left(\frac{k_1}{k_2} \right)^{1/2} \]

Tangential Force (Drake and Walton, 1995):

\[F_t = \min \left[|k_t ds|, |\mu F_n| \right] \]
Equation for Translational Particle Motion

\[
\rho_s V_s \frac{d\tilde{u}_s}{dt} = (\rho_s - \rho) V_s \ddot{g} \quad \text{(buoyancy)}
\]

\[
+ \frac{1}{2} \rho C_D^* A |\tilde{u}_f - \tilde{u}_s| (\tilde{u}_f - \tilde{u}_s) \quad \text{(drag)}
\]

\[
+ \rho V_s c_m \left(\frac{D\tilde{u}_f}{Dt} - \frac{d\tilde{u}_s}{dt} \right) \quad \text{(added-mass)}
\]

\[
+ \rho V_s \frac{D\tilde{u}_f}{Dt} \bigg|_{\zeta = \infty} \quad \text{(horizontal pressure)}
\]

\[
+ F_\Phi \quad \text{(inter-particle)}
\]

(e.g., Madsen, 1991) *(e.g., Richardson and Zaki, 1954)
Bimodal Simulation Suite

Particle Diameter Ratios:

| D_L/D_S | 5/4 | 3/2 | 2/1 |

LARGE particle diameter fixed at 1.5 mm.

Bed Composition:

Mass ratio % of particles in simulation domain, M_L/M_S.

| 10/90 | 20/80 | 30/70 | 40/60 | 50/50 | 60/40 | 70/30 | 80/20 | 90/10 |

Monochromatic Waves (6 s period):

<table>
<thead>
<tr>
<th>velocity skewness;</th>
<th>velocity amplitude (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2; 0.85</td>
<td>1.2; 1.10</td>
</tr>
<tr>
<td>1.2; 1.10</td>
<td>1.2; 1.35</td>
</tr>
<tr>
<td>0.8; 0.85</td>
<td>0.8; 1.10</td>
</tr>
<tr>
<td>0.8; 1.35</td>
<td></td>
</tr>
<tr>
<td>0; 0.85</td>
<td>0; 1.10</td>
</tr>
<tr>
<td>0; 1.35</td>
<td></td>
</tr>
</tbody>
</table>

243 total different simulations \rightarrow 15,000 CPU hours (CRAY X1)
Power Law Hypothesis

\[
\frac{q_L}{q_S} = K \left(\frac{M_L}{M_S} \right)^{\frac{D_L}{D_S}}
\]

\[
\frac{\bar{v}_L}{\bar{v}_S} = K \left(\frac{M_L}{M_S} \right)^\alpha
\]

- Transport Ratio obeys power law that is independent of forcing.
- Power law contains mass on both sides of the equation → may produce artificially high correlations (Puleo et al., 2005).
- Rewrite power law before performing regressions.
\[\alpha = \frac{D_L}{D_S} - 1 \]
to within the 95% confidence interval.

\[K = 4.3 \]
Predicting Partial Transport Rates

\[
\frac{q_L}{q_S} = K \left(\frac{M_L}{M_S} \right)^{\frac{D_L}{D_S}}
\]

\[
q = q_L + q_S
\]

\[
q = \begin{cases}
 k \langle u^3 \rangle + K_a \left(a_{\text{spike}} - a_{\text{crit}} \right) & \text{for } a_{\text{spike}} > a_{\text{crit}} \\
 k \langle u^3 \rangle & \text{for } a_{\text{spike}} \leq a_{\text{crit}}
\end{cases}
\]

\[
a_{\text{spike}} = \frac{\langle a^3 \rangle}{\langle a^2 \rangle} \quad k = 0.8 \text{ kg s}^2 \text{ m}^{-4}
\]

\[
K_a = 0.07 \text{ kg s m}^{-2} \quad a_{\text{crit}} = 1 \text{ m s}^{-2}
\]

(Drake and Calantoni, 2001)
Predicted Versus Measured Partial Transport Rates
Summary

\[\frac{q_L}{q_S} = K \left(\frac{M_L}{M_S} \right)^{\frac{D_L}{D_S}} \]

Caveats

• Grains must sort vertically!
• Practical use in morphodynamic model requires sophisticated bed tracking scheme (a lot of book keeping!)
Future Directions

• Physical/theoretical basis for the power law?
• Steady flow simulations
• Simulations of dry granular flows
• More complex nearshore flows and finer grains (i.e., flows with turbulent lift and wave-current interaction)