I/O - 3
8255 PPI
PHY 4635/5635
Spring 2009

82C55 Programmable Peripheral Interface (PPI)
- Three I/O ports: A, B, C
 - Selected via

<table>
<thead>
<tr>
<th>A1</th>
<th>A0</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Port A</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Port B</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Port C</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Command Register</td>
</tr>
</tbody>
</table>

To read / write, drop CS and either RD or WR low. Select port.

82C55 Programmable Peripheral Interface (PPI)
- Low-cost, popular component for parallel I/O in 8086/8088.
- Can interface any TTL device to the CPU directly.
- 24 pins for I/O in two groups of 12.
- Three distinct modes of operation

- Here:
 - Port A = C0h
 - Port B = C2h
 - Port C = C4h
 - CR = C6h
- PC’s use 60h-63h
 - Speaker, timer, KB
8255 Control

- Two groups
 Group A = A0-A7 + C4-C7
 Group B = B0-B7 + C0-C3
- Three modes
 Mode 0, 1, 2

8255 Control

- MODE 0:
 - Simple I/O operation
 - Port pins are assigned to be
 level-sensitive inputs or
 latched outputs.
 CR = \(100xx0xx\)
 Where the “x” would define the
 directionality of each port via
 the last slide.

8255 Control

- If A0=A1=1, Data becomes
 control byte (write only to CR)
- MSB=1 : Mode control
 D0-D2: Group B control
 D3-D6: Group A control
 (2 mode select bits)
- MSB=0: Allows you to set or
 reset any port C bit.

8255 Control

Mode 0 control words and corresponding I/O configuration
Example

- What is the mode and I/O configuration for ports A, B, and C of an 8255 after its control register is loaded with
 90h?
 81h?
 82h?
Ports A & B are in mode 0 – simple latched outputs.
(CR = 80h)
Port A = 7 segment data inputs
Port B selects which segment of the bank will display.
I/O ports 0700h-0703h (via the PAL)
WR pin is strobed by the PAL output as well (not shown)

MOV AL,80h
MOV DX,703h
OUT DX,AL ;Set CRC
CALL DISP

PROC DISP NEAR
PUSHF
MOV BX,8 ;Load count
MOV AH,7fh ;Load selection pattern
MOV SI, OFFSET MEMLOC-1 ;Data address
MOV DX,701h ;Address port B
DISP1: MOV AL, [BX+SI] ;Address port A
 OUT DX,AL ;Get data to display
 DEC DX ;Address next digit
 INC DX ;Address port B
 DEC BX ;Adjust count
 JNZ DISP1
 POPF
 RET
DISP ENDP

74LS85
- 4-bit magnitude comparator
- Per truth table, only when
 A=B and IN(pin 3)=1 does pin 6 = 1
• Addresses align as 8255 ports…
 FF00h = A
 FF01h = B
 FF02h = C
 FF03h = Control Reg.
• Without the NAND gate here, these become:
 0300h = A
 0301h = B
 0302h = C
 0303h = Control Reg.

Recall from Lab…
• Switch bank and LED bank, we did this…
 MOV DX, 303h
 MOV AL, 90h
 The “90h” to CR = 1001 0000 (see previous example) forces
 Port A (300) to be input (Switches)
 Port B (301) to be output (LEDs)
 Port C (302) to be output (we didn’t use it on our breakout board)

Recall from Lab…
• Relay box, we did this…
 MOV DX, 303h
 MOV AL, 81h
 The “81h” to CR = 1000 0001 (see previous example) forces
 Port A (300) to be output (not used on relay box)
 Port B (301) to be output (not used on relay box)
 Port C (302)
 Bits C7-C4 = output (light bulbs and alarm)
 Bits C3-C0 = input (door sensor / temp. sensor circuit)
Parallel Printer Port – Recall…

Replace with 8255!

HW Assignment

• From previous slide, assume…
 – An 8088 in maximum mode and that a
 8288 bus controller is generating all
 necessary I/O control signals
 – The I/O port addresses have already
 been decoded to select the 8255 –
 assume it is at location 0378-037B
 • e.g. Port A = 0378h
 Port B = 0379h
 Port C = 037Ah
 CR = 037Bh
(a.) Connect the wires in the
 diagram at right
(b.) Modify the code in the following slide
 that will…
 - Define the CR per your wiring diagram
 - Print the ASCII character stored in BL

Recall our print sequence
based on the non-8255 implementation…

PRINT PROC NEAR
 MOV DX,8004h ;Go look at PORT 2
 IN AL,DX
 TEST AL,01h ;Is the printer busy?
 JNE PRINT
 JNE PRINT
 MOV AL,BL ; Assume BL holds ASCII
 character to be printed
 MOV DX,8000h ;Place character in buffer
 OUT DX,AL
 MOV DX,8002h ;Print buffer contents
 OUT DX,01h
RET
PRINT ENDP

NOTE: you only need to define CR once, prior to the procedure calls

Other examples…

• Please analyze the other Mode 0 examples in the
 book:
 – LCD interface
 – Stepper motor interface
 – Key matrix interface
Chapter 11, section 11-3
8255 Control

- **MODE 1:**
 - Strobed I/O
 - Groups A and B consist of byte-wide I/O ports, each with nibble-wide control ports.
 - **Group A:** I/O = A0-A7
 - **Group B:** I/O = B0-B7

Control port pin usage depends on Group and IN/OUT

Mode 1 - input

- Input ports capture data when STB is sent low.
- This activates the IBF (input buffer full) pin (SW)
 - Recall keyboard INT 16h / 01 (Is buffer full?)
- It also activates the INTR (interrupt request) (HW) – more on interrupt handling later.
- An IN instruction sends a RD=0 which resets IBF and INTR.

Mode 1 – Input Example: Keyboard

- STB is provided whenever a key is pressed.
 - DAV (Data available) is active for 1.0μs.
Code – INT 16h / 0

INT16.0 PROC NEAR
IN AL,22h ;Port C
TEST AL,20h ;Check IBF line
JZ READ ;If IBF=0
IN AL,20h ;Port A
IRET
INT16.0 ENDP

Here, the IBF line is coming from port C, pin 5 (see previous slides)…. 00x0 0000 = 20. If IBF is high, read in data.

Mode 1 - output

• When output latches hold data for external device, the OBF/OBF (output buffer full) line goes active.
• When the external device gets data, it strobes the ACK (acknowledge) line low.
• This, in turn, resets the OBF line.

Mode 1 – Output Example: Printer

• **Homework assignment:**
 Write a short paragraph that describes how this interface works – how it is programmed to use DS, ACK, and OBF to send a character to the printer.
 (see page 421, 6th edition)